
RD-R145 279 PLANARITY CRITERIA IN ELECTROMAGNETIC TOPOLOGY(U) i/i
DIKEWOOD ALBUQUERQUE NM R 5 NOSS JUL 84 AFWL&-TR-84-29
F2968i-82-C-0027

UNCLASSIFIED F/ 12/ NL

mofflffl.flfflmlfllf

I.-m



ILl -7

1.1 ~ ,.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A



AFWL-TR-84-20 AFWL.TR.
84-20

in PLANARITY CRITERIA
4. IN ELECTROMAGNETIC TOPOLOGY

R.S. Noss

LuTech, Inc
3516 Breakwater Court
Hayward CA 94545

July 1984

Final Report

Approved for public release; distribution unlimited.

0.

-AJ

AIR FORCE WEAPONS LABORATORY DTIC
Air Force Systems Command S L C Ef
Kirtland Air Force Base, NM 87117 SP0

84095 81_



AFWL-TR-84 -20

This final report was prepared by LuTech, Inc, Hayward California, under
Contract F29601-82-C-0O27, Job Order 37630131 with the Air Force Weapons
Laboratory, Kirtland Air Force Base, New Mexico. Dr Carl E. Baum was the
laboratory technical advisor on this project.

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or
in any way supplied the said drawings, specifications, or other data, is
not to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented inven-.
tion that may in any way be related thereto.

This report has been authored by a contractor of the United States L
Government. Accordingly, the United States Government retains a nonexclu-
sive, royalty-free license to publish or reproduce the material contained
herein, or allow others to do so, for the United States Government purposes.

This report has been reviewed by the Public Affairs Office and is
releasable to the National Technical Information Services (NTIS). At NTIS, L_
it will be available to the general public, including foreign nations.

If your address has changed, if you wish to be removed from our mailing
list, or if your organization no longer employs the addressee, please notify
AFWL/NTAAT, Kirtland AFB, NM 87117 to help us maintain a current mailing list.

This technical report has been reviewed and is approved for publication.

LEONIE D. BOEHMER
Project Officer

FOR THE COMMANDER

DAVID W. GARRISON ROGE S. CASE,
Lt Col, USAF Lt
Chief, Applications Branch Chler" Aircraft & Missile Division

DO NOT RETURN COPIES OF THIS REPORT UNLESS CONTRACTUAL OBLIGATIONS OR NOTICE
ON A SPECIFIC DOCUMENT REQUIRES THAT IT BE RETURNED.



UNCLASSIFIEDA A'i527
SC~p,' C;ASSIFICATION OF T12 PAGE

REPORT DOCUMENTATION PAGE
1. ME"o~ ASECU PITT CLASSIFICATION 1. RESTRICTIVE MARKINGS

Unclassified_______________________
2 ;041IrvT CLASSIPICATION4 IUT.IORITY 3. GiSTRIOUTIONIAVAILAGILITV OF REPORT

Approved for public release; distribution
bOICLASSIPICATiONOWNGMAOING ECPIEGUL unlimited.

I PERFORMING ORGANIZATION REPORT NMEIS) S. MONITORING ORGANIZATION REPORT NUMBERISI

AFWL-TR-84-20
a& NAME OP PE~R.OOGNZTO .OPESMO. 7& NAME OF MAON ITORING RGAN.ZAT.ON

IncPb~l. Air Force Weapons Laboratory

BACORSS (Cily. 544t, end ZIP Cad.. 7b. ADORESS (City. SI... smi ZIP COR.I

H~ayw~ard CA 94545 Kirtland Air Force Base NM 87117

~ NME P JNONGpOEORNO B~OPPICER SYMBOi. 9. PROCUREMENT INSTRUMENT IDENTIPICATION NUMBER
a& NME F FUDINAPONORIQ 7F29601-82-C-0027

1k ACORESS 4iCIy. S tat . ZIP Cadit1 10. SOURCE OR PUNOING NOS.
PROGRAM PRIOJCT TASK WVORK UNIT

aELEMENT NO. NO NO NO

I I TITLE itij.de . ~CI...,ett. 64711F 3763 01 31
PLANARITY CRITERIA IN ELECTROMAGNETIC TOPOLCGY

It. PERISONAI. AIJTIORISI
Noss. R. S.

13. TYPE OR REPORT 13bL TiME COVEREG .GT PRPR S O ~~ .PG ON

Final Report 0PROM.R To±.j 1984, July 43
lB. SUPRLGMENTARV NOTATION

Work performed under Subcontract No. OC-SC-1026-4 for Dikewood, Division of Kaman
Sciences Corporation.

1?. COSATI CocES IS. SUEJECT TERMS ,COl..-,'I~ t YI I5.lIt k -bN I,, e"

PIELO IGROUP I Sue_ On Electromagnetic Topology, Graph Theory, Internaction
12 01Sequence Diagram, Isomorphism, Planarity

15. AETRC 145I. p.,RuIee' Id5. 1yb o~,.b

>The principal tool of the electromagnetic topologist is the interaction sequence
diagram (ISO), which is the dual graph of the electromagnetic topology (EMT) of a
system. One of the problems of working with the ISO is its complex appearance, in part
due to multiple crossings of edges. This report presents some necessary and sufficient
conditions for a graph to be planar, plus an algorithm to determine the planarity of
any graph from its incidence matrix. Several topological invariants of the ISO are

defined to aid the discussion of computational feasibility of the algorithm.

2a GIST IIUTIONIAVALAEILITy OP ABSTRACT 21 AESTRACT SECURITY C-.ASSiPICATION

UNCLASSiPIEGI0UNLIMITEG r SAME ASPPY = GIC USERSf Unclassified
22, NAME OP REISPONS1BLE INGIVIGIJAL 220 TILEPIONe NUMEER 22c OPP.CE SYNIBOL

Carl E. Baum (505) 844.0326 NTAAT
DO FORM 1473,83 APR EOITION OP I AN 73.5E OBSOLETE UNCLASSIFIED

SECURITY CLABSIPiCATION Of TM.E PAGE



UNCLASSIFIED
SICURITY CLASI PICA~tOft O0 THIS PAGG

UNC LAS SMI!ED
SICuMIV CLAISIPtCAIOPO OP ?I$UAG@



CONTENTS

Section Page

I INTRODUCTION .......... ........................ 3

II DEFINITIONS ...... ... ......................... 4

III SOME CRITERIA FOR PLANARITY ....... ................ 20

IV AN ALGORITHM TO DETERMINE PLANARITY ..... ............. 28

V CONCLUSIONS ...... ... .. ....................... 38

REFERENCES ........ ... ........................ 39

Accession For

NTIS CRA&I

DTIC TAB
Unlannounced
Justification0

By
__Distr4 butin
Availability Codes

iAvail and/or

Dizst I Special

. .. . .. . . . . . . 14-



FIGURES

Figure Pg

1 Vertex set and edge set of a graph ..... ............... 5

2 Directed edges and graphs . . ................. 6

3 Adjacency, incidence, and loops ...... ............... 7

4 Parallel edges and simple graphs ...... ................ 8

5 Isomorphic graphs G, and G2 . . . .  . . . . . .. . . . .. . . . . . .  . 9

6 Edge progression in a graph ...... .................. 11

7 Chain and circuit progressions in a qraph .... ........... 12

8 Progressions in a digraph ...... ................... 13

9 Contraction of a graph ..... ..................... ... 14

10 Conformal graphs ....... .. ........................ 15

11 Elementary contraction of a graph ... ............... ... 16

12 Matrices of a graph ...... ...................... .. 18

13 K5, the smallest nonplanar complete graph .... ........... 21

14 K3 ,3 , the smallest nonplanar complete bipartite graph ....... 21

15 A sample electroma(,netic topology ... ............... ... 22

16 The dual graph (ISD) of Figure 15 ... ............... ... 23

17 The Peterson graph ..... ....................... ... 24

18 The geometric dual of a plane graph ... .............. .. 26

19 Cocycles of the graph in Figure 12a ... .............. .. 27

20 Correspondence between m-vectors and cycles ... .......... 29

21 Spanning tree and cycle matrix of a graph ............. .. 32

22 Finding spanning trees using Biggs' Theorem ... .......... 34

23 Cycles of the graph in Figure 12a ... ............... ... 35

24 Cycle bases and spanning trees for Figure 12a ... ......... 36

2



I. INTRODUCTION

The principal tool of the electromagnetic topologist is the interaction

sequence diagram (ISD), which is the dual graph of the electromagnetic topol-

ogy (EMT) of a system. The EMT is defined in terms of layers, sublayers, and

elementary volumes (Refs. 1,2,3). Sublayers are disjointed from one another,
and layers, defined to be disjointed unions of certain sublayers, are also
mutually disjointed. An elementary volume shares some part of its surface

with another elementary volume. All such volumes contained in a sublayer

possess this property, and their union is the sublayer. If only layers and

sublayers are considered, the ISD is a tree graph. In this way the compli-

cation of cycles is deferred to the elementary volume level. In the following,

reference to the ISD means any subgraph corresponding to the partitioning of

a sublayer into elementary volumes.

One of the problems of working with the ISD is its complex appearance, due

in part to multiple crossings of edges. In some cases it is possible to

reduce the number of crossings by drawing the graph differently. The ISD

appearance is least complicated if its edges are drawn as straight line seg-

ments with no crossings. An intermediate step is to eliminiate the crossings.

A graph which can be drawn in this way is said to be a planar graph, and such

a rendition is known as a plane graph. Edges of a simple planar graph can

always be represented by straight line segments which meet only at vertices.

This report presents some necessary and sufficient conditions for a graph

to be planar, plus an algorithm to determine the planarity of any graph from

its incidence matrix. Some definitions are introduced beforehand to facil-

itate the presentation of the criteria. Several topological invariants of

the ISO are defined to aid the discussion of computational feasibility of the

algorithm.
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II. DEFINITIONS

This section presents some basic definitions, to raise the apparent ratio

of theorems to definitions in the results which follow. Other definitions

will be introduced as the need arises. Figures illustrating the terminology
are indicated in parentheses.

A graph G consists of a vertex set V(G) of vertices and an edge

set E(G) of edges, represented by unordered pairs of elements of V(G),

called end points (Fig. 1). An edge becomes a directed edge (or arc) by

specifying an ordered pair of vertices, called the initial and terminal
vertices (Fig. 2a). If every edge in E(G) is an arc then G is a directed

graph, or digraph (Fig. 2b). If functions are assigned to the edges of a

graph, then a direction is implied. The opposite direction is indicated by

attaching a minus sign. An example of this is current in an electrical net-

work. In this way end points of an edge may be called initial or terminal

vertices arbitrarily, and the distinction between a graph and digraph need

not be stressed.

Two vertices are adjacent if they are end points of some edge. A vertex

and edge are incident if the vertex is one of the end points of the edge. A

loop is an edge or an arc that is incident with only one vertex (Fig. 3).
Edges having the same end points are said to be parallel. A simple graph has
no parallel edges and no loops (Fig. 4). Parallel edges are also called

multiple edges.

Two graphs are isomorphic if their vertices and edges can be placed in

incidence-preserving one-to-one correspondence (Fig. 5). A geometric graph

is a graph whose vertices are selected points in two-or-three-dimensional

space and whose edges are nonintersecting simple curves each of which joins

two vertices (or, in the case of a loop, closes on a single vertex) without

containing any other vertices. A geometric realization of graph G is a

geometric graph that is isomorphic to G.

4
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a b vertex b

end-points

vertex set:

V(G) = a,bc,d,e,f)}

edge set:

E(G) = (a,b), (a,c), (a,d), (a,e), (b,e), (b,f), (c,d),(c,f), (d,e)}

Figure 1. Vertex set and edge set of a graph.
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terminal - initial vertex

vre i2directed edge (arc)

(a) A graph containing an arc.

(b) A directed graph (digraph).

Figure 2. Directed edges and graphs.
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incident
< edge

and

"I"% adjacent-' vre
vertices

Figure 3. Adjacency, incidence, and loops.
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parall1el

parallel
arcs

as- strictly parallel

arcs

(a) Parallel edges, arcs, and loops.

I

(b) A simple graph.

Figure 4. Parallel edges and simple graphs.
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B

V(G1) = A,BCDEFj a b 0A 
g

hd
E(G1) =~~~~~~~

-{(~B)~(B,C), (C,D), (0,F), (C,F),

(C,E), (8,E), (A,F), (A,E)}
E F

(a) graph G1

A a B b -C

f d /V(G 2) = {A9BCDEFj
cE(G 2) = la~bc~d~e~f~g~h~ij

- (A,B), (B,C), (C,F), (B,F), (B,D),

E F (A,D), (A,E), (D,E), (E,F)~

(b) graph G2

vertices (c) THE ISOMORPHISM: de

1-1 1-1
V(GI.4- V( 2)E(G 1 ).u-m..E(G 2 )

A E a g

B A b a

C B c b

D C d c

E D e d

F F f e
g f

h i

i h

Figure 5. Isomorphic graphs G 1  and G
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A pZane graph is a geometric graph in a plane. A planar graph is a graph

that is isomorphic to a plane graph. A plane graph divides the plane into

regions, one of which is infinite in extent. Using stereographic projection

or inversion, it is possible to redraw a plane graph so that any desired

region is the unbounded one (Ref. 2).

All of the figures depicting graphs in this report are actually geometric

graphs which are geometric realizations of graphs having the properties illus-

trated. Although they are all drawn in a plane, only those figures in which

all edges meet only at vertices are plane graphs.

An edge progression is a finite sequence of (not necessarily distinct)

edges such that one end point of the first edge is also an end point of the

second, the remaining end point of the second is also an end point of the

third, etc. (Fig. 6). The edge progression is closed if the remaining end

point of the first edge is the same vertex as the remaining end point of the

last, and open otherwise. A chain (circuit) progression is an open (closed)

edge progression having no repeated edges (Fig. 7), and a chain (circuit) is

a set of edges which, if properly ordered, form a chain (circuit) progression.

A tree is a graph which contains no circuits. In a geometric graph, a chain

(circuit) is a set of edges which form a open (closed) curve. The terms arc,

path, and cycle replace the terms edge, chain, and circuit, respectively, when

the graph is a digraph (Fig. 8), but frequently the terms are used interchange-

ably, with their precise meaning indicated by the graph under consideration.

The degree of a vertex is the number of edges with which the vertex is

incident, with loops counted twice. A contraction of a graph is the removal

of a vertex V of degree two, replacing its two incident edges (VI, V) and

(V,V2) by one edge (Vl,V 2) (Fig. 9). Two graphs are confoymal, or

isomorphic to within vertices of degree two, if they are isomorphic or can be

transformed into isomorphic graphs by contractions (Fig. 10). An elementary

contraction is the deletion of a vertex V and an edge (V,W), replacing all
other edges (U,V) incident with V by edges (U,W) (Fig. 11).

10



I

II

--,-'--"- -----

A

", , I II

"'I I /

b c

B -c

e fg
. g

E •

edge progression: (A,B), (B,E), (E,C), (C,B), (B,A), (A,D)

= a,e,fd,ac.

F

Figure 6. Edge progression in a graph.
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a ,[b

d-

|I

(a) Chain progression a,b,d,e,g,c.

a,' c.b
'e if

(b) Circuit progression a,d,f,q,c.

Figure 7. Chain and circuit progressions in a graph.
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(a) arc proriression: a

e,g,c,ae,f d

'e f 7g

ac (b) path progression:

dg,c,b

/
kfe

(c) cycle progression: a:
/ b

/ d
c,a,e,g ,

\ f /

e g

Figure 8. Progressions in a digraph.
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V V4 V vertex of

V3  4 V degree 2

V 2

Scontract

4

V3  V2

Figure 9. Contraction of a graph.
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Figure 10. Conformal qraphs.
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IU

U2

T elementary
contraction
of W and (V,W)

U2

U3

U1

Figure 11. Elementary contraction of a graph.

16



Associated with a graph comprising n vertices and m edges are several

matrices. The adjacency matrix A(G) = (Aij) is an n x n matrix defined by

A.. = [1 if vertices i and j are adjacent,

Ai to otherwise.

The adjacency matrix differs from the node-node matrix of electrical circuit

theory only on the diagonal, where O's replace nonzero entries representing

self-connection (Ref. 4).

The degree matrix D is a diagonal matrix with

Dii = degree of vertex i, for i = 1, ... , n.

There is also ar n x m incidence matrix I(G) = (li.i), whose entries are
given by

-1 if vertex i is the initial end point of edge j,

1.. = if vertex i is the terminal end point of edge j,

0 otherwise.

Unlike the node-branch matrix, the incidence matrix distinguishes between

initial and terminal vertices (Ref. 4).

These matrices are related by the matrix equation

I IT = - A

In Figure 12a the graph in Figure 6 has been relabelled to construct the

matrices of adjacencydegree and incidence (Figs. 12b, c and d).

17
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V 0 1 1 0 1
e1 0 1 1 0

S 2  A(G) 1 1 0 1 0

e 3L1 0 010J

5 e6
<1 72

V4

(a) Figure 7 after relabelling. (b) Adjacency matrix.

3 00 0 0 1 1 1 0 0 0 0
0000 110000

0 3 0 0 0 -1 0 0 1 1 0 a

D(G) - 00300 I(G)- 00-1-1 010

0 0 0 3 0 0 0 0 0-1-1 1

0 0 0 0 2 0-1 0 0 0 0-1i!

(c) Degree matrix. (d) Incidence matrix.

Figure 12. Matrices of a graph.
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Note that every column of I(G) contains at most two nonzero elements

since every edge has two end points (not necessarily distinct). A matrix is

said to have graphic form if every column contains at most two nonzero ele-

ments.

Two topological invariants of a graph are used in this report. A

component of a graph is the largest subset of the vertex set with the pro-

perty that no vertex of that subset is joined by an edge to any vertex not

in that subset. Topologically, a component is a maximal connected subset of

the graph. For any graph G comprising n vertices, m edges, and p

components,

c(G) = m- n+p

and

c*(G) = n - p

c(G) is called the cycZe rank, circuit rank, or cycZomatic number.

c*(G) is called the cutset rank, or cocycZe rank.

19



III. SOME CRITERIA FOR PLANARITY

Two classes of graphs which have been studied extensively have been

named Kn  and K . K is the complete graph on n vertices. Itnrl,••.•,r m  n

is the largest posiible sTmple graph with n vertices, as its edge set con-

sists of all possible pairs of vertices. The symbol K5  is the smallest 0

nonplanar complete graph (Fig. 13).

The K r is called the complete m-partite graph. Its vertex set

is partitionedi~o m disjoint subsets, with the ith subset containing r i
vertices. Every vertex in a particular subset is connected by an edge to

every vertex not in that subset, but no two vertices in the same subset are so

joined. Figure 14 shows K3 ,3, the smallest nonplanar complete bipartite

graph. Note the two subsets of the six vertices. Each subset contains three

vertices. Each vertex has degree three, because it is joined to every vertex

in the complementary subset.

The existence of these two nonplanar graphs yields one of the most useful

criteria for distinguishing between planar and nonplanar graphs by inspection:

CRITERION 1: A necessary and sufficient condition for

a graph to be planar is that it contains 0

no subgraph conformal to K5 or K3 ,3.

Figure 15 presents a sample EMT. The dual graph, an ISD, is shown in

Figure 16. Note that the number of crossings appears to be minimized, but it

is not clear whether or not the graph is planar. Application of this cri-

terion establishes that the ISD is nonplanar because of the heavy lines

tracing out K3,3.

Although it contains subgraphs conformal to K5  and K3 ,3 , the

Peterson graph, shown in Figure 17, can also be reduced to K5  by a sequence

of elementary contractions. This illustrates another criterion for planarity:

20
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Figure 13. K5, the smallest nonplanar complete graph.

Figure 14. K3 3, the smallest nonplanar complete bipartite graph.
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(a) The Peterson graph.

I five

elementary~contractions

(b) K5

Figure 17. The Peterson graph.
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CRITERION 2: A graph is planar if and only if it

contains no subgraphs contractable to

K5 or K3 ,3 by means of a sequence

of elementary contractions.

A dual graph of a graph G may be defined in several ways. A planar

graph possesses a geometric dual G* such that for each region of G,

including the infinite region, there is a vertex of G*. An edge is drawn

between two vertices of G* if the corresponding regions of G are con-

tiguous (have a common edge as part of their boundary). In this way edges

of G are placed in one-to-one correspondence with edges of G*. The graph

in Figure 6 is an example of a plane graph, shown in Figure 18a with its

geometric dual. The geometric dual of the geometric dual of a plane graph is

isomorphic to the plane graph (Fig. 18b). Note the correspondence between

vertices of degree two and parallel edges.

A cut-set of a graph is a disconnecting set (set of edges whose removal

disconnects the graph) consisting of all the edges that join a specified set

of vertices with the complementary set of vertices. A cut-set containing no

proper subsets which are also cut-sets is called a minimal cut-set, proper

cut-set, or cocycle. The graph in Figure 6 has been dissected in Figure 19

to show its 15 cocycles.

A graph G has an abstract dual G* if there is a one-to-one corres-

pondence between edges of G and those of G* with the property that a set

of edges of G forms a circuit in G if and only if the corresponding set

of edges in G* forms a cut-set in G*. It has been shown that if G is an
abstract dual of G* then G* is an abstract dual of G. Furthermore, if

G is a planar graph with geometric dual G* then G* is an abstract dual

of G.

CRITERION 3: A graph is planar If and only if it has

an abstract dual.
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(a) A plane graph (- ) and its geometric dual (.....).

......... 1

(b) The geometric dual (-) and its geometric dual (.....).

Figure 18. The geometric dual of a plane graph.
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Figure 19. Cocycles of the graph in Figure 12a.
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IV. AN ALGORITHM TO DETERMINE PLANARITY

The listed criteria are useful for visually inspecting small graphs or

large symmetrical graphs but, in general, an algorithmic determination of

planarity is desired. By working with the vector space associated with the

incidence matrix, one can develop an algebraic criterion which depends on the

proper choice of basis.

Let G be a graph with n vertices, m edges, and p components.
Without loss of generality G may be assumed to be a simple connected graph

such that every edge lies on at least one cycle, for the planarity of a graph

is not affected by the addition or deletion of multiple edges, loops, or tree
subgraphs, and a disconnected graph is planar if, and only if, each of its

components is planar. (For an EMT drawn to elementary volume level, however,

this assumption is mi.sleading: it may be true that even though the decom-

position of each sublayer into elementary volumes results in a dual planar
subgraph, the union of all such subgraphs requires nonplanar connecting edges.
The problem arises because sublayers are pairwise disjoint, but elementary

volumes are not, and the ISD typically consists of only one component.)

The incidence matrix assigns an initial and terminal vertex to each edge.

To associate a cycle c with an m-vector C, an orientation is assigned to

the cycle. As the cycle is traversed according to this orientation, the dir-

ections of the edges may or may not agree with the direction of travel, and

are said to contribute positively or negatively, accordingly. Then the
m-vector C = (C1, ... , Cm) is defined:

1 1 if edge i contributes positively to the cycle,
C 1  -1 if edge i contributes negatively to the cycle,

0 otherwise.

Figure 20a shows the graph of Figure 12a after contraction of vertex V4.
This is K4, the complete graph on four vertices. Two cycles and their assoc-

iated 6-vector are given in Figure 20b. Note that the product of each

6-vector with the incidence matrix (Fig. 20c) is zero (Fig. 20d).

28



V1  el V2 cycle 6-vector

e" eel,e 2,e6,e51 C1  (-1,-1,0,0,,-1).

4 e3
e5  1e2 e6 e3 l C2 - (0,-1,1,0,0,-1)

V3  V4

(a) K4, the complete graph (b) Two cycles in K4 and

on four vertices, their associated 6-vectors.

1001 10O
-1 1 1 0 0 0

(c) incidence matrix 
I(K4 ) - 1 0 0

0 -1 0 -1 0 1

0 0 -1 0 -1 -1

1 -1 0

0 1 -1 0

(d) (C1)(KT 0: 0 1 1 0 0 - 0
•2 0 -1 1 0 0 -1 1 0 -10

1 0 0 -1

0 01-

Figure 20. Correspondence between m-vectors and cycles.
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Not every m-vector C corresponds to a cycle of G, but it can be shown
that C corresponds to some cycle, or set of cycles, if and only if

C * I(G)T = 0. If Co0 is the set of all m-vectors representing one or more

cycles, then C0  is the null space of I(G), and the dimension of C0  is

c = c(G) = m - n + 1, the cycle rank defined above with p = 1.

The criterion for planarity of G may now be expressed in terms of the

cycle matrix whose c rows correspond to the elements of a basis for Co,

and whose m columns correspond to the edges of G. The graph formed from

the cycle matrix by construction of the basis cycles is identical to G, since
every edge is a cycle edge, and the basis generates all cycles.

CRITERION 4: A graph is planar if and only if there is

a cycle matrix for it having graphic form.

A basis for C consists of c m-vectors. Given any basis, all cycles

of G may be obtained by taking all possible combinations of the original c

m-vectors. Thus, there are

2c - 1 2ifrn cyl

2c 1 =(CO + (C) + ... + (C)

cycles from which a basis may be chosen, so at most (2c - 1) different cycle

matrices must be considered. The following table summarizes the relationship

between c, 2c - 1, and c  for small values of c.

cycle rank # of cycles # of cmatrices

(c = m-n+1) (2c - 1) ( E 1)

2 3 3

3 7 35
4 15 1365

5 31 169,911

6 63 6.8 x 107

7 127 9.0 x 1010

8 255 4.0 x 1014

9 511 6.1 x 1018
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Once a basis for C0  has been found, all other bases may be derived.

The first basis may be determined by the use of a spanning tree, a tree sub-

graph of G having n vertices and n-i edges. For each edge e of G

which is not an edge of T, there is a unique cycle in G containing e and

edges of T. Figure 21 shows a spanning tree of the graph in Figure 12a

(Fig. 21a) and the unique cycles corresponding to the edges not in the tree

(Fig. 21b). By taking all three such edges, a basis for C0  is obtained

(Fig. 21c).

The search for a spanning tree proceeds by deleting edges from G. Since

every spanning tree of G contains n-1 edges, there are (nm) possibil-

ities. The number of spanning trees of G is a topological invariant K(G)

called the coapiexity of G. Two related matrix formulas can be comuted to

obtain K(G):

(1) ic(G) J = Adj (D- A),.and 

. .
(2) K(G) - det (J + D - A),

n
where J :y

The first formula states that every cofactor of D - A is equal to K(G).

The second formula is a consequence of the first.

For the graph in Figure 12a,

J+D-A = 04 10 ,so (G) = 24.
1004

01 1 0 3
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' e eee

(a) A spanning tree of the graph in Figure 12a.
I
a

ee e e e

e, ey

7 e 7

c- (1,-4,o,12,1,1) c2 v (1,-1,oo1,o,1) C3 - (O,-1,1,0,o,1,I)

(b) Unique circuits induced by non-tree edges.

/1 -1 0 1 0 1 1\

(c) c3cle matrix- 1- 0 0 0 1 1

-1 1 0 0 1 1

Figure 21. Spanning tree and cycle matrix of a graph.
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There is an alternative method of obtaining spanning trees and cycles

which may be written down in terms of matrix operations. Any square subnatrix

of the incidence matrix I(G) of a graph G has determinant equal to -1,

0, or +1. This fact leads to the following theorem (Ref. 5):

"Let U be a subset of E(G) containing n-I edges.

Let I(U) denote an (n-i) x (n-i) submatrix of I(G),

consisting of the intersection of those n-i columns of

I(G) corresponding to the edges in U and any set of n-I

rows of I(G). Then I(U) is non-singular if any only if

the subgraph of G having edge set U is a spanning tree

of G."

The graph in Figure 12a is shown in Figure 22a, together with its inci-

dence matrix in Figure 22b. The five 4 x 4 submatrices obtained from the

first four columns of I(G) are all singular, since the chain (el, e2 , e3 , e4 )

contains a cycle (Fig. 22c). However, if the first column is replaced by the

fifth column, then all five of the corresponding submatrices are nonsingular

(Fig. 22d), showing that (e2 , e3, e4 , e5) is a spanning tree.

For this graph, there are seven cycles from which three may be chosen to

form a cycle basis. The cycles, labelled C1 , C2, ... , C7 , have been drawn

in Figure 23, and the 35 possibilities for bases have been written out in

Figure 24. The four dependent cycles which are induced (by addition) by each

basis are listed below the three cycles forming the basis. Among the seven

triplets which do not span the space, each edge occurs three times, suggesting

that there is no preferred labelling of the cycles which reduces the number of

combinations which must be considered. Application of criterion 4 to the

cycle matrices separates the candidates into three classes, denoted in Figure

24 by:

(P) The cycle matrix has graphic form, proving planarity,

(N) Some column of the matrix contains three nonzero elements

(no conclusion),

and (0) Some column of the matrix contains three zeros (not a basis).

33

[LA



a 0 DC

0 D -CD . 0 - 0 -a 0D~

CD 0D 0Z 0 0) 40 0 -4 0 0 - -

0 
ID

CD 0 - 0 0 - - 0 0 0 0 - 0 0"

I 
ccI

o 0r -4 - a
Ul,

CA In 
I

-4 0 .4'.4 0 P. w40 04 " 04 410

S& u

C4 40 40 LU4.

o .4-4-3

ala

to CJVIE
5. ,C

-4 .4 0 . 'I 0 v4 CI0
0 I w.4-1a

LVI LVI34



1e6

cI = ( 1,- 1, 0, 0,1 , 0,1)

cz  (,-,1,OO,1) c3  
• (oOOi,-iiO)

c4  (1,0,-1,1,oOo)
c= (i,o,-i,O,i,-i,O)

c6  (O,-1,1,-1,1,,1) C7  (1,-1,0,1,O,1,1)

Figure 23. Cycles of the graph in Figure 12a.
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C1 O. C3 (- C1. ... C4 r) I C1 . S(0 CIO1 . C6 (N CIO C..C (N)

C I ~~~~~~~~ ~ ~ ~ ~ ~ * C. C7  (NP C+C5.c , C 4C 'c

.. C + C: C ~ c+ C4. C: +~ C C ~ ~ C + C: C5 C +C
2 C3  6  C2 C~ 7  C2 C. C1  C6 C3  C2 0 C7 .C 4

CIO, C2+ C3. C 4  C1I. C2.+ C 4. C 3 . C I+C2' CS- C0  C 1+ C' C 6. CI C1 .C' C7 C6

CIO C3. C4 (P) C1. C3. CS (N) CI. C 3. CS (N) C1. C3. C7 (0) CI. C4. CS (NJ

C I C 3. C? C1'+ C 3 .C , C I C3 .C7  C I C 3. C7  C + C 4' C6

c+C.CCC. C~e CI + C6. C4  C I C 7. C3 C1' C5 SC 2
1CC- 4 £t1 7 C' C-C3

c 3 +C 4 .C s Kj C3 +C S-. - C3 + C6 C2  C3 +C7' 1 C 4+CS 3

CI + C 3# C4-. C2z c C1 C3+ C 5 .C 6  CI + C 4 C 6 .CS C1I' C3 + C 7 -C 0  C1 C4 C5 C7

C1. C4. C6 (0) CIO CV. C7 (N) C1. CS. CS (NJ CIO CS. C7 (NP C 1, CG. C7 (NP)

CI + C 4" "a C1' C4Y CS C1+ CS, C2  CI + C S. C 2  CI + C 6. C4

C + C . C4  C2' c7. C3  Cl + C6. C4 CI + C 7. C 3 C1+ C 7 .C3

C4 6. C 1 5 . C C2  +5  6 , C C7 CS C6.+ C7 . C 5

C1.+ C 41. C6 C0 co CI+ C4+ C7. CS5  C C5+ CG" C3  CI' C5 C7  4 ~ C'C.C.C

C2, C3. C4 (P) C2, C3. CS (N) Cz. C3. CS (0) CZ- CV, C7 (N) C2. C4. CS (N)

C2: + 2 C 63 c C4 c2 + c3 .C6  c 2+ C 3. c 6 c z C3' C6  cz + c4- C7

C3+gC CS* C4. 3 Cd* C6- C3 C2 4+- cS'C.C

3' Y 4 C2 'SC +,C C 3 C-C 1  C 

C2* C3 + C4. C1  C2+ C3 + C e C7  C2'+ C 3+ C 6 C0a C2+ C3' C7 C C' C4 C5 C6

Cz, C4. C6S (N) CZ. C4. C7 (0) C2. Cs- C6 (N) C2-Cg. C7 (N) C2. C6. C7 (N)

Cz + C4* C7  CZ' Y4 C? C2+ C s. C 1  C2+ CS" C1  C2+ C 6. C 3

.> C24 C 6. C 3  C? Y7 C4  C2 ' C6* C3  C2+ C7* C4  C2+ C 7- C,

e" C4+ C6* CI C4+ Y7 Cz C5'+ C 6- C7 C5'+ C 7 C 6  CS + C I C S

C2+ C4 '+ C6., CS c7* C4 C7* co C+ C5+ C5- C4  C+ C5' CY C3  C2'# C6 + C7 .C1I

CV. C4. CS (0) C3. C4. CS (N) C3. C4. C7 (NJ C3. C5. C6 (N) CV. CS. C7 (NJ

C3 +~ C5 C3$ C2 C4, CS ej C3' C40 C5  C3+ CS- C4  C3 + C S- C 4

C 3 C1. CS C1+ Is" CZ +. C3 C7- C1  C + C & C 2  C3. C7 . C I
C3' CS.C , 6 C 2' C .6 C 5  C

C3  C4  CS. C0  C +4  C .C7  C4'+ C 7 " C6  C # C 6  .CI C C 7  C2

C3+ C4+ C. CO 3+ C4 '+ C 6. C? V39 C 4+ CIO CG C3+'S C6. C, C C C7 z

C3 ' C7 (' C C' CIS (N)1  C. C7. () C4 C 4 C7 (N) CS C- c7 .()

C3* C6, C2 C51 CS, C, 45 S"- C6  C6' CS CI5  C 6 C 7C

C3+ CS" C7' C4  C4+ cs+ Cs* C2 C4 ' C5'* C7* C1  C4' CG' C7- C3 CS' c' C7, Cc

Figure 24. Cycle bases and spanning trees for Figure 12a.
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Also shown in Figure 24 are the spanning trees which induce the cycle
bases. In this example, all bases which satisfy criterion 4 for planarity

can be induced by a spanning tree. In general, however, neither existence

nor uniqueness of a spanning tree generating a given basis is guaranteed. If

it could be proved that only bases induced by spanning trees need to be

checked, the usefulness of the algorithm would be increased greatly since, in

general, the complexity of a graph is a much smaller number than the combin-

atorial numbers (2Cc" 1)
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V. CONCLUSIONS

In this report, the problem of determining when a graph can be redrawn

as a planar graph was addressed. Several criteria were presented and illus-

trated. One particular criterion, the existence of a cycle matrix having

graphic form, was discussed in detail. The computational effort required

to solve graphs of practical size is beyond our present and projected

computational capabilities. Further theoretical work must be done to

improve the efficiency of this algorithm if it is to be useful.
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